隧道工程物理模拟试验技术现状与趋势分析
论文作者:草根论文网 论文来源:www.lw360.net 发布时间:2018年02月07日

0引言    

国内隧道及地下工程自20世纪80年代以来得到了前所未有的发展,21世纪是隧道工程建设的黄金时期,铁路隧道、公路隧道、地铁隧道、水电隧洞以及跨江、跨海通道的建设都将进人高峰期。与此同时,隧道工程面临巨大的机遇与挑战,山岭隧道工程的地质条件越来越复杂,煤矿巷道向深部不断发展,城市地铁建设如火如茶,海底隧道与输油气工程隧道方兴未艾,城市地下管廊隧道悄然兴起。大规模复杂的隧道工程修建势必带来诸如隧(巷)道软岩大变形机制、长大深隧道的突水突泥机制、深部复合地层TBM隧道稳定性原理与控制、城市地铁隧道交叉重叠及穿房过河引起的地层与周围环境风险等诸多基础科学与工程技术问题,这些问题的进一步研究和解决可为未来隧道工程建设中的设计和施工提供更加可靠的理论依据与技术保障。    

本文主要针对当前国内隧道工程物理模拟试验系统及其发展趋势进行了较为全面细致的总结、分类和阐述,并对当前隧道工程物理模拟试验系统关键技术进行了对比分析。最后,提出了以模型体积大小为依据的试验系统分类方法,可为隧道工程物理模拟试验系统的应用及后续建设提供参考。

1试验系统分类与特点    

隧道工程物理模拟试验系统的分类对于系统使用与建设规模确定、技术难度分析、建设周期与费用估算等都具有明确的指导意义,但目前尚无一个权威或统一的分类标准。试验系统分类是一个科学问题,需综合考虑多方面的因素。通过查阅文献和总结分析,提出了一种试验系统分类方法,如图1所示。即按试验模型体积将试验系统分为小型、中型、大型和超大型4类按模型体荷载分为自重型和离心型按加载动力来源分为重力型(含自重)、电机型、液压型(千斤顶或液压枕)、气压型和复合型(如气液结合)5类按加载的静动力状态可分为静力型和动力型按模型端面加载维数分为单轴型、双轴型和三轴型3类。    

隧道工程物理模拟试验系统的研制与应用多以大专院校、研究院所和企业技术中心为主    

众所周知,在相似模型试验分类中,相似比作为一个重要的分类指标,可以用来准确计算模型体积的大小,但相似比为原型与模型尺寸之比,是一个相对概念。在隧道物理模拟试验中,模型体积越大,所需相似材料越多,费用越高,难度越大,制备周期越长,故模型体积能够较为全面地反映试验系统的规模、试验实施难度以及费用成本等关键要素,概念更为直观。

2试验系统关键技术    

试验系统的关键技术包括:相似材料的选取、加载控制系统的稳定性、应力与应变量测的准确性以及开挖支护方式的选择等。

2.1相似材料    

模型试验成败的前提条件是相似材料的选取是否合理,材料的性质是否能够准确地反映研究对象的主要物理力学特征。相似材料按功能一般可以分为骨料、胶结剂和调节剂3部分,骨料和胶结剂对材料性能起“总体控制”作用,调节剂对材料某项参数的性能起“单项调节”作用。

2.2加载控制    

物理模型试验的顺利进行与加载控制系统是否稳定密切相关。根据模型试验加载边界条件,加载方式可分为刚性加载和柔性加载2种根据加载动力来源可分为重力加载、电机加载、液压加载、气压加载和复合加载5种。

2.3应力与应变量测    

应力与应变是隧道物理模型的重要力学参数,也是试验中需要获取的基础数据。应力值一般可通过测量元件直接量测,也可利用元器件测得的应力一应变关系求解得到

2.4位移、变形量测    

位移或变形是隧道工程围岩与其所处应力环境及环境变化相互作用的结果,是分析和评价隧道工程安全稳定性最常用的指标,也是试验中最重要的量测内容。

5开挖支护    

目前,隧道模拟开挖一般有人工和机械2种方式。人工开挖可以比较灵活地调整隧道形状,但成型效果差,开挖效率低而机械开挖操作简单、成型好、效率高,但形状多局限于圆形。李利平等研制的由可伸缩式长铲、锚杆定位器以及混凝土施作器组成的开挖装置以及李浪等研制的步进电机驱动切削刀盘,对隧道开挖装置的研制有着重要的借鉴意义。

3试验系统研究问题分析

3.1围岩变形规律与机制    

围岩变形规律与机制一直是国内外学者研究的主要问题。通过物理模拟试验系统可以有效研究隧道围岩变形的时空演化过程与变形模式和机制。

3.2隧道开挖方法优化    

根据围岩条件和环境控制要求,隧道开挖方法一般有全断面法、台阶法、分部法、盾构法与TBM法等。正确选择开挖方法是隧道安全施工的前提,试验研究的主要内容是进行方法比选和优化工艺参数。

3.3隧道支护方法优化    

隧道支护主要包括以锚喷支护或钢拱架为主的初期支护、以模板混凝土或管片为主的二次支护以及小导管和大管棚超前支护等。合理选择支护方式、确定支护参数是确保隧道稳定的前提条件。

3.4隧道开挖灾害问题    

如何合理模拟隧道开挖过程中出现的灾害问题(突水突泥、岩爆、断层塌方等)也是物理模拟试验研究的主要内容。

3.5“长大深”及海底隧道问题    

模型试验主要用来合理模拟工程所处的高地应力环境影响、大型断面与超长隧道的结构稳定性以及水环境下的水压作用与流一固藕合作用。

3.6隧道施工环境影响问题    

地铁隧道施工中带来的环境问题比较突出,隧道施工过程中如何保证工程本身、地面与地下邻近建(构)筑物的安全是物理模拟试验研究的主要问题。

4存在问题及发展方向

4.1存在的问题    

1)系统规模。目前,大型、超大型试验系统模型制作周期长、费用高、所需人员多,且存在一定的闲置问题,利用率较低。    

2)试验模型。采用常用的相似材料制作的试验模型内部不可见,难以实现模型内部变形的直接观测,透明岩土材料主要以模拟软岩、砂土和载土为主,因此需进一步研究拓展岩土材料的模拟范围。    

3)加载控制。刚性加载强度大,属于“位移加载”方式,即加载面位移保持均匀,应力不均匀,使得模型边界位移一致,与实际受力不符柔性加载属于“应力加载”方式,即加载过程保持加载面应力均匀,位移不均匀,柔性加载有利于提高试验精度,减小边界效应影响范围,但其行程小、加载强度低。

4.2发展方向

1)物理试验系统精致化。2)物理试验模型透明化。3)加载控制方式灵活化。4)数字照相量测标配化。5)开挖支护方式合理化。6)隧道多场藕合模拟法。

5结论与建议    

1)提出了一种基于模型体积大小的隧道工程物理试验系统分类方法,即将试验系统分为小型(v<0. 125 m3 )、中型(V = 0. 125~1. 0 m3、大型(V=1.0~8.0 m3)和超大型(V≥8.0 m3)4种类型。该分类可以较好地反映试验系统的规模、研发周期、费用、模型制作及使用率等主要问题。    

2)中小型试验系统具有研发周期短、费用低、使用方便、利用率高、更易精致化、加载控制更精确与量测更精细等优点,因此,建议新系统建设中将其作为一个主要的比选方案。    

3)随着透明岩土试验技术的发展,结合非接触数字照相变形量测方法与3D打印技术,可实现模型内部全域变形的直接精细量测与全面可视化,透明岩土试验有望成为隧道物理模拟试验系统发展的一个新方向。


相关推荐
联系我们

代写咨询
 362716231

发表咨询
 958663267


咨询电话

18030199209


查稿电话

18060958908


扫码加微信

weixin.png


支付宝交易

ali.jpg

  • 在线客服
  • 认准本站客服
  • 代写咨询
    362716231
  • 发表咨询
    958663267
  • 咨询电话
  • 18030199209
  • 查稿电话
  • 18060958908
  • 扫描加微信
  • 支付宝交易
  • 返回顶部
    在线客服